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Abstract. We propose that the spin-triplet pairing can originate from the intraatomic Hund’s rule
exchange in a degenerate d-band system. The role of this interaction in the pairing is decisive
when accounted for in conjunction with rather strong correlations induced by the direct Coulomb
interactions. The superconducting-gap value is obtained in the saddle-point approximation for the
Coulomb correlations, treated in the auxiliary Bose field approach, which is combined with the
mean-field approximation of the BCS type for the pairing part.

The existence of an electronic counterpart of the spin-triplet superfluid3He has not been
demonstrated as yet. The discovery of superconductivity in a strongly anisotropic system
Sr2RuO4 [1] was followed by a conjecture [2] that this compound may provide an example
such a system. This conjecture is supported by the fact that the three-dimensional analogue
SrRuO3 is an unusual metallic ferromagnet [2]. However, two specific features of those system
should be emphasized. First, both the Ca2RuO4 and Sr2Ru1−x IrxO4 are Mott insulators with
the spinS = 1 [4]. On the other hand in the Sr2RuO4 system we encounter a largeT 2 term in
resistivity, the Korringa-type relaxation in the nmR and a relatively large linear specific heat
coefficientγ . So, this system can be regarded as an almost localized Fermi liquid [5]. Second,
from an electronic point of view the Ru4+ ion contains two holes in a triply degenerate t2g state,
which hybridizes with the 2pπ∗ states due to oxygen in the nominal 2p6 configuration. Hence,
the orbital effects in conjunction with the intraatomic Hund’s rule coupling determine the
system properties. Therefore, a natural question arises and concerns the connection between
the Hund’s rule (ferromagnetic) coupling and the triplet pairing. This question bears a direct
analogy to that relating the antiferromagnetic kinetic exchange interaction and the singlet
pairing in high-Tc and heavy-fermion systems [6].

In this paper we propose a mechanism of spin-triplet pairing as originating from the
intraatomic ferromagnetic (Hund’s rule) coupling, which is furnished by the circumstance that
the paired electrons can occupy locally different orbitals with quenched or zero orbital moment,
so we can neglect the spin–orbit interaction. To make our argument transparent we consider
here the simplest situation of a doubly degenerate band. It is easy to generalize the present
results to an arbitrary degeneracyD > 1; the main restrictions are caused by the band filling and
the magnitude of the correlations. Our model thus differs from the spin-fluctuation mechanism
[7], as well as from that induced by the intersite Coulomb interaction [8], as it includes pairing
by the local exchange interaction in real space, which takes place between rather strongly
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correlated electrons. We demonstrate that the paired state appears already on the saddle-point-
approximation level; thus, the fluctuation-induced contribution can also be included as a higher
order processes. We also show that the solution mediated by the intraatomic exchange leads
in a straightforward manner to a nonstandard gap and, in particular, to the relation between
the linear specific heat coefficientsγS ∼ γN/2 [9] for superconducting (S) and normal (N)
phases. More importantly, the sizable value of critical temperatureTS ≈ 1 K appears only
when the band fillingn is substantially greater than unity and less than half filling. Hence, the
triplet pairing emerges when both the ferromagnetism with orbital ordering (n ≈ 1) [10] or
antiferromagnetism (n ≈ 2) [11] become unstable. The results match roughly the band filling
encountered in Sr2RuO4, where we have on average(2/3) d holes per band per Ru atom.

We start from the simplest Hamiltonian for electrons in aD = 2-fold degenerate and
correlated narrow band, which has the form

H =
∑
ij lσ

tij a
†
ilσ ajlσ +U

∑
il

nil↑nil↓ + (U − J )
∑
i

ni1ni2 − 2J
∑
i

(Si1 · Si2 + 3
4ni1ni2). (1)

We have assumed that the hopping integralstij are the same for both orbitalsl = 1, 2. Also,
the intraorbital Coulomb interaction isU , and the interorbital interaction has been taken as
U − J , whereJ > 0 is the magnitude of the Hund’s rule coupling. Both of these assumptions
should not be crucial as we consider the physical quantities involving integration over the
single-particle energies. To emphasize the physics of the problem we consider the equivalent
(canonical) orbital model, since the generalization to the case of anisotropic band of eg or t2g
symmetry does not pose any conceptual difficulty and will be dealt with separately.

The properties of the system characterized by (1) depend crucially on the magnitude of
U andJ > 0 (both parameters are taken relative to the bare bandwidthW = 2z|t |, wherez
is the number of nearest neighbours). The condition for the onset of ferromagnetism in the
Hartree–Fock approximation has the form of the form of the Stoner criterionUeff ρ(εF ) = 1,
whereUeff ≡ U + (D − 1)J , with D = 2 andρ(εF ) ∼ 1/W being the density of states at
the Fermi energy, per atom per spin. However, in the correlated state the contribution to the
system energy∼U is multiplied by the probabilityd2 ≡ 〈nil↑nil↓〉 of encountering a double
occupancy on the same orbital, whereas the negative contribution∼J is proportional to the
local momentm0 ≡ 〈(

∑
l Sil)

2〉. With the growing ratiosU/W andJ/W the direct Coulomb
correlations are suppressed (d2 → 0), whereas the local moment grows (m0 → S(S + 1)),
(whereS = n/2 is the total spin of alignedn 6 D electrons). In effect, the local spin-triplet
correlations induced by the Hund’s rule become essential close to (but below) the Stoner
threshold, since the exchange energy overcomes the direct Coulomb contribution. Thus, the
Stoner criterion for the correlated state should be also modified, as discussed below.

The Hund’s rule pairing is be expressed formally by the spin-triplet-pair-creation operators
(acting on the vacuum state) defined as follows

A
†
i1 = a†

i1↑a
†
i2↑ A

†
i−1 = a†

i1↓a
†
i2↓ A

†
i0 =

1√
2
(a

†
i1↑a

†
i2↓ + a†

i1↓a
†
i2↑) (2)

through which one can express the Hund’s rule exchange part

Si1 · Si2 + 3
4ni1ni2 =

1∑
m=−1

A
†
imAim (3)

In this representation the interorbital correlations are included explicitly in the pairing.
The correlations are accounted for in the auxiliary- (slave-) boson scheme through the

following characterization of the atomic states [12]:

|0〉 = e†
i |v〉 |lσ 〉 = p†

ilσ f
†
ilσ |v〉 |2l〉 = d†

ilf
†
il↑f

†
il↓|v〉
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|2σ σ̄ 〉 = d†
iσ f

†
i1σ f

†
i2σ̄ |v〉 |2σ 〉 = t†iσ f †

i1σ f
†
i2σ |v〉

|3lσ 〉 = s†
ilσ f

†
ilσ f

†
il̄↑f

†
il̄↓|v〉 |4〉 = g†

i f
†
i1↑f

†
i1↓f

†
i2↑f

†
i2↓|v〉. (4)

The notation is self-explanatory: the Bose fields label respectively empty(e), singly occupied
(plσ ), doubly occupied configurations on the same orbital(dl), on different orbitals(dσ ) and
equal-spin(tσ ) triplet states, as well as the triple(sσ ) and the quadruple(g) occupancies.
Such formulation allows for a treatment of the dominant terms∼U beyond the Hartree–Fock
(H–F) approximation, as the result reduces to those obtained in H–F scheme with bothU

andJ substantially smaller thanW . The Hund’s rule pairing is associated with two electrons
on different orbitals, therefore we must project out triple and quadruple occupancies from
interaction (3) and leave the fermionic part for double occupancies. After some algebra we
obtain explicitly:

A
†
imAim = t†iσ tiσB†

imBim + s†
i1σ si1σ + s†

i2σ si2σ + g†
i gi

for (m, σ) = (1,↑) or (−1,↓)
A

†
i0Ai0 = 1

2(d
†
i↑di↑ni1↑ni2↓ + d†

i↑di↓S
+
i1S
−
i2 + s†

i1↑si1↑ + s†
i2↓si2↓ + g†

i gi)

+1
2(d

†
i↓di↓ni1↓ni2↑ + d†

i↓di↑S
−
i1S

+
i2 + s†

i1↓si1↓ + s†
i2↑si2↑ + g†

i gi) (5)

wherenilσ = f †
ilσ filσ , Sσil = f †

ilσ fil Eσ , B†
i1 = f †

i1↑f
†
i2↑ etc. In addition to the above relations

we have the constraints [12], which in the present notation have the form:

Qilσ = p†
ilσ pilσ + d†

ildil + t†iσ tiσ + d†
iσ diσ +

∑
σ

s
†
il̄σ
sil̄σ + s†

ilσ silσ + g†
i gi − f †

ilσ filσ = 0 (6)

Ri = e†
i ei +

∑
lσ

p
†
ilσ pilσ +

∑
l

d
†
ildil +

∑
σ

(t
†
iσ tiσ + d†

iσ diσ ) +
∑
lσ

s
†
ilσ silσ + g†

i gi − 1= 0 (7)

As a result, the effective starting Hamiltonian with inclusion of constraints (6) and (7) is
defined as:H→ H −∑ilσ λ

(1)
ilσQilσ −

∑
i λ

(0)
i Ri − µN̂e, whereµ is the chemical potential

for Ne fermions,N̂e =
∑

ilσ n̂ilσ andλ(0)i andλ(1)ilσ are the Lagrange multipliers.
A brief physical characterization of the formalism just introduced is in place. As is well

known, the slave-boson approach in the case of the Hubbard model reproduces on one hand
the main features of the Gutzwiller approach (see e.g. [20]), and on the other provides an
interpolation between the Hartree–Fock and kinetic exchange limit, where it gives correctly
the t2/U contribution to the ground state energy in the mean-field approximation (see e.g.
[19]). It also provides agreement with the principal results concerning the thermodynamics of
the almost localized systems in the dynamic field approach (cf [16]). Therefore, the approach
can be regarded as a good single-particle interpolative approach between the regimes of weakly
and strongly correlated electrons. However to include the spin-fluctuation contribution [17, 18]
we have to consider the Gaussian fluctuation around the saddle-point solution. The aim of
this paper is to show that there is a nontrivial saddle-point contribution to the pairing, and to
draw attention to its nontrivial consequences. The full analysis requires the inclusion of the
quantum fluctuations and will be quite cumbersome in view of the large number of auxiliary
fields introduced above.

In what follows we will make the saddle-point approximation and thus replace Bose
operators with their expectation values and also putti1 = ti−1 = diσ ≡ t , λ(0)i = λ(0),
λ
(1)
ilσ = λ(1) and, subsequently, make the BCS-type decomposition of the pairing part, as for

the 3d orbitals we have thatJ ≈ (0.2–0.1)U (see also below). By carrying out this procedure,
we obtain the effective Fermi liquid with renormalized characteristics such as the hopping
integral and the magnitude of the pairing potential. However, this effective picture is not a free-
particle picture, as we have to determine the renormalized parameters from the self-consistency
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conditions. Explicitly, the effective Hamiltonian in the saddle-point approximation and with
the local pairing included takes the following form

H =
∑
klσ

(8εk − µ̄)nklσ + 2NUd2 + 4N(U − J )t2

+2N(3U − 5J )(2s2 + g2) + λ(0)N(e2 + 4p2 + 2d2 + 4t2 + 4s2 + g2 − 1)

+4λ(1)N(p2 + d2 + 2t2 + 3s2 + g2)− 2J t2
∑

i,m=−1,0,1

B
†
imBim (8)

whereµ̄ = µ + λ(0) and the band narrowing factor due to the correlations is

8 = 16

n(4− n) [p(e + t) + (t + d)(p + s) + s(t + g)]2. (9)

The local pairing part is now expressed by the condensed Bose amplitudet combined with
the BCS-type triplet-pairing amplitudes〈f †

i1σ f
†
i2σ ′ 〉. The Bose amplitudes renormalize a rather

large bare coupling constantJ of a few tenths of an eV by at least an order of magnitude (see
the figures below) and reduce the drastically the critical temperature. This renormalization is
caused by the circumstance that we have to project out all local configurations except triplets.

Hamiltonian (3) containslocal real-space pairing∼B†
imBim. Decomposing the pairing

operators in the mean-field manner of Bardeen–Cooper–Schrieffer type:B
†
imBim →

〈B†
im〉Bim+HC−|〈Bim〉|2+ 3

4(〈ni1〉ni2+ni1〈ni2〉−〈ni1〉〈ni2〉), and taking the Fourier transform
to the momentum space we obtain the Hamiltonian in the weak coupling (BCS approximation)

H ≈ HBCS =
∑
klσ

Eknklσ +
∑
k

[11f
†
k1↑f

†
−k2↑ +1−1f

†
k1↓f

†
−k2↓

+10(f
†
k1↑f

†
−k2↓ + f †

k1↓f
†
−k2↑) + HC] +E0 (10)

withEk ≡ 8εk− µ̃, µ̃ ≡ µ+λ(0)− 3
4J t

2n, and1m = 1σσ
′ = (−2J t2/N)

∑
k〈f †

k1σ f
†
−k2σ ′ 〉,

and E0 expressing the remaining (operator-free) terms. Note that the weak-coupling
approximation is applicable whenJ t2 � W8. This condition is fulfilled and is checked
a posteriori. Also, to obtain a good Hartree–Fock approximation for the energy in the normal
state we must divide the term34(〈ni1〉ni2 + ni1〈ni2〉 − 〈ni1〉〈ni2〉) by ( n4)

2 in Ek andE0. Then
in the Nambu convention, we can rewrite (10) in the form

HBCS =
∑
k

fkHkfk +E0 +
∑
k

Ek (11)

with f†
k ≡ (f †

k1↑, f
†
k1↓, f−k2↑, f−k2↓), and

Hk =


Ek 0 11 10

0 Ek 10 1−1

1∗1 1∗0 −Ek 0
1∗0 1∗−1 0 −Ek

 ≡ (Ekσ̂0 1̂

1̂† −Ekσ̂0

)
(12)

whereσ̂0 is the unit 2×2 matrix. This effective Hamiltonian expresses a two-band spin-triplet
paired state with an interorbital pairing. Therefore, the pairing will become important in the
correlated state, since the number of local triplet pairs grows withU and eventually becomes
∼(n− 1)2. Note also that the gap isk independent, since it involves intraatomic pairing. This
circumstance provides one of the principal differences with the case of liquid3He. Here we
have a two-orbital(l = 1, 2) situation with the quenched d-orbit moment.

Parametrizing the gap in the standard form [13]

1 ≡ i(d · σ̂ )σ̂y =
(−dx + idy dz

dz dx + idy

)
(13)
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Figure 1. The superconducting gap as a function of the amplitude of direct Coulomb interaction
U/W for n = 1.6, 1.8 and 2.0 (from top to bottom, respectively). The vertical dashed line in the
bottom panel marks the Mott localization threshold. The insets provide the magnitude of the Bose
fields and the band narrowing8, all againstU/W .
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we obtain the eigenvalues±λks ≡ [E2
k + |d|2 + s|q|2]1/2, with s = ±1, andq = i(d× d∗).

Hence, the free energy functional has the form

F = −2kBT
∑
k,s=±1

ln[1 + exp(−βλks)] + 2
∑
k

[Ek − (λk+ + λk−)/2] +E0 +µNe. (14)

Minimization with respect tod∗i yields the gap equation

1̂ = J t2

N

∑
ks

tanh(βλks/2)

2λks
i(Qs · σ̂ )σ̂y (15)

whereQs = d + s q×d|q| . In the situation with the local (on-site) pairing one can expect that

1−1 = 11 = 10, so that|d2| = |q| and12 = 2|d|2. In that situation{
λk+ =

√
E2
k +12

λk− = Ek
(16)

i.e. roughly half of the quasiparticle spectrum is gapped, and the gap is obtained by the BCS
equation. In other words, the linear specific heat termγS appears also in the superconducting
state and is about half of the valueγN in the normal state.

To illustrate our results we computed the magnitude of the zero-temperature gap as a
function of the Coulomb interactionU/W , for different values of band fillingn > 1 and
U/J = 5. The amplitudesd, t , s andg of the Bose fields have been obtained from the
minimization ofF in the normal state, as the pairing is treated in the weak-coupling limit.
The calculated results forn = 1.6, 1.8 and 2.0 are displayed on the panel composing figure 1
(for the bare density of statesρ0 = 1/W ). The optimized values of the Bose amplitudes, as
well as the band narrowing8, are displayed in the insets. Note that in each caset2 grows
substantially withU/W and so does the gap. For then = 1.4 case, displayed in figure 2, the
gap is an order of magnitude smaller compared to that forn = 1.6. ForW ≈ 1 eV the gap
is of the order of 1 K for reasonable value of parameters in the almost localized Fermi-liquid
regime. Forn = 1, the effective gap1/W is negligible(∼10−12). Forn→ 2 the gap never
becomes substantial (cf the bottom of figure 1), as the Mott-insulator boundary (cf the dashed
line) is reached first via the first-order transition. Furthermore, forn = 2,g2 = e2 ands2 = p2

because of the electron–hole symmetry. From these figures one can draw the conclusion that
the isotropic triplet superconductivity state with the gap parameter

1 ≈ W8
√
n

2

(
2− n

2

)
exp

(
−W8

2J t2

)
should be possible to observe for the intermediate band filling 1< n < 2. This gap expression
is multiplied by the additional factorD(D − 1)/2 for D > 2, if we think in terms of the
equivalent-orbital model. One should also note that the paired state appears in the regime,
where theStoner conditionis not yet fulfilled (see below for details). Also, forU/W = 1.5,
we have displayed the results forJ/W = 0.3 and therefore, the Hund’s rule coupling is
only a small fraction of the band energy as8 ∼ 1/2, andt2 ∼ 1/5. The value of the
superconducting gap is thus strongly reduced by the presence of the factort2, making the
BCS-type approximation applicable, if not realistic. More precisely, in the weak-coupling
limit we should haveW8 � J t2. The value of the gap will not grow indefinitely with
increasingU (andJ ), as theStoner criterion is crossed, and the energy of the ferromagnetic
state may become quickly lower than that of the superconducting state. This is because the
magnetic moment grows linearly withJ , not exponentially, as does1 in the paired state. The
exponential factor exp(−W8/2t2J ) is contained also in the expression for the superconducting
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Figure 2. The gap versusU/W for n = 1.4, corresponding to 0.7 particles per band per atom.
This roughly represents the situation for Sr2RuO4.

transition temperatureTS ; it contains the ratio of the quasiparticle band energy(∼−W8/4)
in the normal state to the effective coupling(J t2).

The above weak-coupling approach will be modified in the strong-correlation regime:
U � W , and forJ & W , whereJ will be replaced by the effective ferromagnetic intersite
kinetic exchange∼zt2/(U − 3J ) [15]. However, in this limit the Fermi liquid may not be
stable.

As stated above, with increasing Coulomb interactions the triplet paired state stabilizes at
the expense of nonmagnetic or antiferromagnetic states. This stabilization does not appear in
the Hartree–Fock limit, since thent = d, and the gain in Hund’s rule exchange energy for any
triplet state (forn > 1) is not sufficient to overcome the corresponding loss in the band energy.
On the other hand, the renormalized Stoner criterion for the onset of the ferromagnetic state
in the correlated state has the form [14][

1−
(
U

Uc

)2 ] [
1− U

W

1 +U/2Uc
1 + (U/Uc)2

]
− J

W
= 0. (17)

Taking the critical value for the Mott localizationUc ≈ 2W , and the actual valueU ≈ W

when the system is close to the first-order localization transition (cf figure 1, bottom), we
obtain the critical valueJ = Jc for the onset of ferromagnetism asJc/U = 1/3. Thus the
paired state can be formed when the system is still paramagnetic.Once the Stoner threshold is
crossed over, the Hund’s rule starts playing its usual role of the principal factor in magnetic-
moment formation. However, even then the coexistence of the spin-triplet superconductivity
and itinerant ferromagnetism is possible. This subject will not be discussed in detail here, as
it requires a separate analysis (it will introduce one additional self-consistent equation for the
magnetic moment)

From the above discussion, one can draw a general conclusion concerning the pairing
in a correlated electronic system. The exclusion of double occupancies on the same orbital
favours local interorbital configurations. In this respect, the present pairing is an analogue of
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the exchange-induced singlet pairing in the high-Tc systems [15]. However, in our situation,
the system isbelow the Mott–Hubbard localization threshold, so it can be described in the
Fermi-liquid (albeit almost-localized) category. Actually, the Mott localization is of the first
order [14] and takes placebeforethe quantum critical point(8 = d = 0) is reached.

Concluding, our model of pairing, based on the Hund’s rule coupling, provides two new
important features: (i) it introduces paired states into the standard discussion of the magnetic
phase diagram of correlated and degenerate systems, (ii) supplies an opportunity of studying
real space pairing in the correlated system with rather well known (Fermi-liquid) nature of the
ground state and (iii) it opens up the possibility of studying the coexistence of ferromagnetism
and spin-triplet superconductivity. Therefore, it can be regarded as a tractable model situation
comprising both the correlated nature of electrons and the exchange-induced local pairing
among them.
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[18] Wölfle P and Li T 1990Z. Phys.7845
[19] Korbel P 1997PhD ThesisJagiellonian University, Kraḱow
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