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Abstract. We propose that the spin-triplet pairing can originate from the intraatomic Hund's rule
exchange in a degenerate d-band system. The role of this interaction in the pairing is decisive
when accounted for in conjunction with rather strong correlations induced by the direct Coulomb
interactions. The superconducting-gap value is obtained in the saddle-point approximation for the
Coulomb correlations, treated in the auxiliary Bose field approach, which is combined with the
mean-field approximation of the BCS type for the pairing part.

The existence of an electronic counterpart of the spin-triplet supediiédhas not been
demonstrated as yet. The discovery of superconductivity in a strongly anisotropic system
SrRuQ, [1] was followed by a conjecture [2] that this compound may provide an example
such a system. This conjecture is supported by the fact that the three-dimensional analogue
SrRuQ is an unusual metallic ferromagnet [2]. However, two specific features of those system
should be emphasized. First, both theRaO, and SgRu;_,Ir,O4 are Mott insulators with

the spinS = 1 [4]. On the other hand in the SRuQ, system we encounter a lar@é term in
resistivity, the Korringa-type relaxation in the nmR and a relatively large linear specific heat
coefficienty. So, this system can be regarded as an almost localized Fermi liquid [5]. Second,
from an electronic point of view the Rtiion contains two holes in a triply degeneratedtate,

which hybridizes with the 2p* states due to oxygen in the nominaP2pnfiguration. Hence,

the orbital effects in conjunction with the intraatomic Hund's rule coupling determine the
system properties. Therefore, a natural question arises and concerns the connection between
the Hund'’s rule (ferromagnetic) coupling and the triplet pairing. This question bears a direct
analogy to that relating the antiferromagnetic kinetic exchange interaction and the singlet
pairing in high, and heavy-fermion systems [6].

In this paper we propose a mechanism of spin-triplet pairing as originating from the
intraatomic ferromagnetic (Hund’s rule) coupling, which is furnished by the circumstance that
the paired electrons can occupy locally different orbitals with quenched or zero orbital moment,
so we can neglect the spin—orbit interaction. To make our argument transparent we consider
here the simplest situation of a doubly degenerate band. It is easy to generalize the present
resultsto an arbitrary degeneray> 1; the main restrictions are caused by the band filling and
the magnitude of the correlations. Our model thus differs from the spin-fluctuation mechanism
[7], as well as from that induced by the intersite Coulomb interaction [8], as it includes pairing
by the local exchange interaction in real space, which takes place between rather strongly
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correlated electrons. We demonstrate that the paired state appears already on the saddle-point-
approximation level; thus, the fluctuation-induced contribution can also be included as a higher
order processes. We also show that the solution mediated by the intraatomic exchange leads
in a straightforward manner to a nonstandard gap and, in particular, to the relation between
the linear specific heat coefficients ~ yx/2 [9] for superconducting (S) and normal (N)
phases. More importantly, the sizable value of critical temperaéfyrer 1 K appears only
when the band filling: is substantially greater than unity and less than half filling. Hence, the
triplet pairing emerges when both the ferromagnetism with orbital orderireg @) [10] or
antiferromagnetismm(~ 2) [11] become unstable. The results match roughly the band filling
encountered in SRuQy, where we have on averag2/3) d holes per band per Ru atom.

We start from the simplest Hamiltonian for electrons iDa= 2-fold degenerate and
correlated narrow band, which has the form

H= Ztija;[gajlo +U Znimniu +U-1J) ZnilniZ -2J Z(Sil - Sip + %nilniZ)' 1)
ijlo il i i

We have assumed that the hopping integralare the same for both orbitals= 1, 2. Also,
the intraorbital Coulomb interaction i3, and the interorbital interaction has been taken as
U — J, whereJ > 0 is the magnitude of the Hund’s rule coupling. Both of these assumptions
should not be crucial as we consider the physical quantities involving integration over the
single-particle energies. To emphasize the physics of the problem we consider the equivalent
(canonical) orbital model, since the generalization to the case of anisotropic bandrdg
symmetry does not pose any conceptual difficulty and will be dealt with separately.

The properties of the system characterized by (1) depend crucially on the magnitude of
U andJ > 0 (both parameters are taken relative to the bare bandwidth 2z|z|, wherez
is the number of nearest neighbours). The condition for the onset of ferromagnetism in the
Hartree—Fock approximation has the form of the form of the Stoner crité&figrnp (er) = 1,
whereU,;r = U + (D — 1)J, with D = 2 andp(er) ~ 1/ W being the density of states at
the Fermi energy, per atom per spin. However, in the correlated state the contribution to the
system energy-U is multiplied by the probability/? = (n;;4n;,,) of encountering a double
occupancy on the same orbital, whereas the negative contributiois proportional to the
local momening = ((}_, Si;)?). With the growing ratio€// W andJ/ W the direct Coulomb
correlations are suppressetf (— 0), whereas the local moment growso(— S(S + 1)),
(whereS = n/2 is the total spin of aligned < D electrons). In effect, the local spin-triplet
correlations induced by the Hund’s rule become essential close to (but below) the Stoner
threshold, since the exchange energy overcomes the direct Coulomb contribution. Thus, the
Stoner criterion for the correlated state should be also modified, as discussed below.

The Hund’s rule pairing is be expressed formally by the spin-triplet-pair-creation operators
(acting on the vacuum state) defined as follows

1
t Tt t Tt t Tt Tt
Ajy = G148, Ay =a;,0;, Ajp = ﬁ(amam +a;1,a;5,) 2
through which one can express the Hund'’s rule exchange part
1
Si1-Six+ %nilniz = Z A;rmAim 3
m=-—1

In this representation the interorbital correlations are included explicitly in the pairing.
The correlations are accounted for in the auxiliary- (slave-) boson scheme through the
following characterization of the atomic states [12]:

0 =ellv) o) =pl,fi,lv) 12 =djfi, £l 1)
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205) =d}, ﬁlaﬁzam 120) = 1] i1 fioe 1)
1310) = sy fiig S S 100 14 = gl f fL, S S5 1) )

The notation is self-explanatory: the Bose fields label respectively etaptyingly occupied

(p1s), doubly occupied configurations on the same orl{ifgl, on different orbitalgd, ) and
equal-spin(z,) triplet states, as well as the triple,) and the quadruplég) occupancies.
Such formulation allows for a treatment of the dominant termis beyond the Hartree—Fock
(H-F) approximation, as the result reduces to those obtained in H—F scheme witty both
andJ substantially smaller thaw. The Hund'’s rule pairing is associated with two electrons
on different orbitals, therefore we must project out triple and quadruple occupancies from
interaction (3) and leave the fermionic part for double occupancies. After some algebra we
obtain explicitly:

A;rmAim t th;ﬂBzm + S,T]_gstla + S,TZUSlZO + gl 8i

for (m,0) = (1, t)or (=1, )
AjgAio = 3(dlydipniaynizy +dydiy ST+ shysing + sl iz, + 8] 80)

3] diyniynizy + df diy S+ s siny + siysize + 8] 80) (®)
wheren;i, = f1, fio, S5 = fig fus, Bl = . ;ETfi% etc. In addition to the above relations
we have the constraints [12], which in the present notation have the form:

Qilc = pllgptlo +d,1dtl +t olio +d dzcr + ZS T Sil ,lgslla +gl 8i — f};‘gﬁ[ﬂ' =0 (6)

R - 6‘ e+ Z Piis Pilo + Zd,[dll + Z(t lio +d1‘ m) + Zsitgsil(r + g,ng -1=0 (7)
lo

As a result, the effective starting Hamiltonian with inclusion of constraints (6) and (7) is
defined asH — H — 3, A Qio — 3 AP R; — uN,, wherep is the chemical potential
for N, fermions,N, = 3", fiiis andk(o) and)»f,lg are the Lagrange multipliers.

A brief physical characterlzauon of the formalism just introduced is in place. As is well
known, the slave-boson approach in the case of the Hubbard model reproduces on one hand
the main features of the Gutzwiller approach (see e.g. [20]), and on the other provides an
interpolation between the Hartree—Fock and kinetic exchange limit, where it gives correctly
the 12/ U contribution to the ground state energy in the mean-field approximation (see e.g.
[19]). It also provides agreement with the principal results concerning the thermodynamics of
the almost localized systems in the dynamic field approach (cf [16]). Therefore, the approach
can be regarded as a good single-particle interpolative approach between the regimes of weakly
and strongly correlated electrons. However to include the spin-fluctuation contribution [17, 18]
we have to consider the Gaussian fluctuation around the saddle-point solution. The aim of
this paper is to show that there is a nontrivial saddle-point contribution to the pairing, and to
draw attention to its nontrivial consequences. The full analysis requires the inclusion of the
quantum fluctuations and will be quite cumbersome in view of the large number of auxiliary
fields introduced above.

In what follows we will make the saddle-point approximation and thus replace Bose
operators with their expectation values and alsout= t;,_1 = d;, = ¢, /\fo) = 10,

AP = 1@ and, subsequently, make the BCS-type decomposition of the pairing part, as for
the 3d orbitals we have thdt~ (0.2-0.1)U (see also below). By carrying out this procedure,

we obtain the effective Fermi liquid with renormalized characteristics such as the hopping
integral and the magnitude of the pairing potential. However, this effective picture is not a free-
particle picture, as we have to determine the renormalized parameters from the self-consistency
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conditions. Explicitly, the effective Hamiltonian in the saddle-point approximation and with
the local pairing included takes the following form

H= (e, — Do + 2NUd* + AN (U — J)1?
klo
+2N(BU —5J)(25% + g2) + \ON(e? + 4p? + 2d° + & + 4s% + g% — 1)
O ON (P +d? + 2%+ 32+ g% — 212 " Bl By (8)
i,m=-—1,0,1

whereji = 1+ A© and the band narrowing factor due to the correlations is

o= 22 [pern+a+d)(prs) +st+ P, (©)
n(4—n)

The local pairing part is now expressed by the condensed Bose amplitumhebined with
the BCS-type triplet-pairing amplitudeﬁilr f;gg,). The Bose amplitudes renormalize a rather
large bare coupling constaritof a few tenths of an eV by at least an order of magnitude (see
the figures below) and reduce the drastically the critical temperature. This renormalization is
caused by the circumstance that we have to project out all local configurations except triplets.
Hamiltonian (3) containocal real-space pairing»B;nB,»m. Decomposing the pairing
operators in the mean-field manner of Bardeen—Cooper—Schrieffer ty&ﬁgBim —
(B;l)B,-m+HC—|(B,-,,,)|2+§1((n,»1)n,»2+n,-1(n,»2) —(ni1){(n;2)), and taking the Fourier transform

to the momentum space we obtain the Hamiltonian in the weak coupling (BCS approximation)
H~Hpcs = Z Exnpg + Z[Alfljnfjkn + Aflfljlifjkzl

klo k
+ A0S [z + fi Fliay) + HCT + Eo (10)

with Ej, = ®ei — i, ji = u+2 @ — 27e%n, andA, = A, = (=2712/N) ¥ (i, 1000,

and Ey expressing the remaining (operator-free) terms. Note that the weak-coupling
approximation is applicable whefit?> <« W®. This condition is fulfilled and is checked

a posteriori Also, to obtain a good Hartree—Fock approximation for the energy in the normal
state we must divide the ter%((nil)nig +n;1(n;2) — (nj1){n;2)) by (%)2 in E, andEg. Then

in the Nambu convention, we can rewrite (10) in the form

Hpes = kakak+E0+ZEk (11)
% %

with £ = (fiyr, fay, fok2rs f-r2y), and
Erx 0 A1 Ao
oo | 0 B A0 AL :<EE&0 A )
ol aro oAy —Ex 0 | T\ AT —Eiéo
Ay A, 0  —Eg
wheredy is the unit 2x 2 matrix. This effective Hamiltonian expresses a two-band spin-triplet
paired state with an interorbital pairing. Therefore, the pairing will become important in the
correlated state, since the number of local triplet pairs grows Wignd eventually becomes
~(n — 1)2. Note also that the gap ksindependent, since it involves intraatomic pairing. This
circumstance provides one of the principal differences with the case of féled Here we
have a two-orbita{/ = 1, 2) situation with the quenched d-orbit moment.
Parametrizing the gap in the standard form [13]

. —d, +id, d
AE'(d'G)G"=< di dx+zidy> (13)

12)
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Figure 1. The superconducting gap as a function of the amplitude of direct Coulomb interaction
U/ W forn = 1.6, 1.8 and 2.0 (from top to bottom, respectively). The vertical dashed line in the
bottom panel marks the Mott localization threshold. The insets provide the magnitude of the Bose
fields and the band narrowin, all against// W.
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we obtain the eigenvaluesiy, = [E2 + |d|? + s|q|?]Y/?, with s = 1, andg = i(d x d*).
Hence, the free energy functional has the form

F=—2ksT ) I[1+exp(—prr)]+2) [Ex — (ke +Ax-)/2]+ Eo+ pNe.  (14)
k,s=+1 k
Minimization with respect t@/ yields the gap equation
N Jr? tanh(Bigs/2) .
A= _"—— M|

N 4= 2 s

(Qy - 6)0y (15)

whereQ, = d + s%i. In the situation with the local (on-site) pairing one can expect that

A_1 = A1 = Ay, so that/d?| = |g| and A2 = 2|d|?. In that situation

{Ak+ = JEZ+ A2 (16)

M = Ey,

i.e. roughly half of the quasiparticle spectrum is gapped, and the gap is obtained by the BCS
equation. In other words, the linear specific heat tggrappears also in the superconducting
state and is about half of the valyg in the normal state.

To illustrate our results we computed the magnitude of the zero-temperature gap as a
function of the Coulomb interactioty/ W, for different values of band fillingg > 1 and
U/J = 5. The amplitudesl, ¢, s and g of the Bose fields have been obtained from the
minimization of F in the normal state, as the pairing is treated in the weak-coupling limit.
The calculated results far= 1.6, 1.8 and 20 are displayed on the panel composing figure 1
(for the bare density of statgd = 1/ W). The optimized values of the Bose amplitudes, as
well as the band narrowing, are displayed in the insets. Note that in each cdsgows
substantially witht/ W and so does the gap. For the= 1.4 case, displayed in figure 2, the
gap is an order of magnitude smaller compared to that fer 1.6. ForW ~ 1 eV the gap
is of the order 1 K for reasonable value of parameters in the almost localized Fermi-liquid
regime. Fom = 1, the effective gap / W is negligible(~10-'?). Forn — 2 the gap never
becomes substantial (cf the bottom of figure 1), as the Mott-insulator boundary (cf the dashed
line) is reached first via the first-order transition. Furthermore; fer2, g2 = ¢? ands? = p?
because of the electron—hole symmetry. From these figures one can draw the conclusion that
the isotropic triplet superconductivity state with the gap parameter

n n W

axwo 3 (2-5) e~ 57)
should be possible to observe for the intermediate band filliagid< 2. This gap expression
is multiplied by the additional factob(D — 1)/2 for D > 2, if we think in terms of the
equivalent-orbital model. One should also note that the paired state appears in the regime,
where theStoner conditions not yet fulfilled (see below for details). Also, féf/ W = 1.5,
we have displayed the results fdy W = 0.3 and therefore, the Hund’s rule coupling is
only a small fraction of the band energy @s~ 1/2, andt> ~ 1/5. The value of the
superconducting gap is thus strongly reduced by the presence of the fatoaking the
BCS-type approximation applicable, if not realistic. More precisely, in the weak-coupling
limit we should haveW® > Jr?. The value of the gap will not grow indefinitely with
increasingU (andJ), as theStoner criterion is crossednd the energy of the ferromagnetic
state may become quickly lower than that of the superconducting state. This is because the
magnetic moment grows linearly with, not exponentially, as doesin the paired state. The
exponential factor exp-W ®/2¢2J) is contained also in the expression for the superconducting
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Figure 2. The gap versug// W for n = 1.4, corresponding to 0.7 particles per band per atom.
This roughly represents the situation fopRBuO,.

transition temperaturgs; it contains the ratio of the quasiparticle band endrgy- W ®/4)
in the normal state to the effective coupliafy?).

The above weak-coupling approach will be modified in the strong-correlation regime:
U > W, and forJ 2 W, whereJ will be replaced by the effective ferromagnetic intersite
kinetic exchange-z1?/(U — 3J) [15]. However, in this limit the Fermi liquid may not be
stable.

As stated above, with increasing Coulomb interactions the triplet paired state stabilizes at
the expense of nonmagnetic or antiferromagnetic states. This stabilization does not appear in
the Hartree—Fock limit, since then= d, and the gain in Hund’s rule exchange energy for any
triplet state (fom > 1) is not sufficient to overcome the corresponding loss in the band energy.
On the other hand, the renormalized Stoner criterion for the onset of the ferromagnetic state
in the correlated state has the form [14]

2
- (LY ][ b teuae] 2 o a7
U. W1l+U/UN?| W

Taking the critical value for the Mott localizatioti. ~ 2W, and the actual valu¢ ~ W
when the system is close to the first-order localization transition (cf figure 1, bottom), we
obtain the critical valug/ = J, for the onset of ferromagnetism ds/U = 1/3. Thus the
paired state can be formed when the system is still paramag@stiae the Stoner threshold is
crossed over, the Hund'’s rule starts playing its usual role of the principal factor in magnetic-
moment formationHowever, even then the coexistence of the spin-triplet superconductivity
and itinerant ferromagnetism is possible. This subject will not be discussed in detail here, as
it requires a separate analysis (it will introduce one additional self-consistent equation for the
magnetic moment)

From the above discussion, one can draw a general conclusion concerning the pairing
in a correlated electronic system. The exclusion of double occupancies on the same orbital
favours local interorbital configurations. In this respect, the present pairing is an analogue of
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the exchange-induced singlet pairing in the highsystems [15]. However, in our situation,
the system iselowthe Mott—Hubbard localization threshold, so it can be described in the
Fermi-liquid (albeit almost-localized) category. Actually, the Mott localization is of the first
order [14] and takes pladzeforethe quantum critical point® = d = 0) is reached.

Concluding, our model of pairing, based on the Hund'’s rule coupling, provides two new
important features: (i) it introduces paired states into the standard discussion of the magnetic
phase diagram of correlated and degenerate systems, (ii) supplies an opportunity of studying
real space pairing in the correlated system with rather well known (Fermi-liquid) nature of the
ground state and (iii) it opens up the possibility of studying the coexistence of ferromagnetism
and spin-triplet superconductivity. Therefore, it can be regarded as a tractable model situation
comprising both the correlated nature of electrons and the exchange-induced local pairing
among them.
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